##### 实数内积 - 实数内积 - **实数内积**是有限维[[实向量空间]]的[[内积]] $\langle \cdot ,\cdot \rangle:V\times V\rightarrow\mathbb{R}$, 使得实向量空间成为一个[[欧氏空间]], 对所有 $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, $\alpha, \beta \in \mathbb{R}$ 满足 - 双线性性 - $\langle\alpha\mathbf{u}+\beta\mathbf{v},\mathbf{w}\rangle=\alpha \langle\mathbf{u},\mathbf{w}\rangle+\beta \langle\mathbf{v},\mathbf{w}\rangle$ - $\langle \mathbf{u},\alpha\mathbf{v}+\beta\mathbf{w} \rangle = \alpha \langle \mathbf{u},\mathbf{v} \rangle + \beta \langle \mathbf{u},\mathbf{w} \rangle$ - 对称性 - $\langle \mathbf{u},\mathbf{v} \rangle = \langle \mathbf{v},\mathbf{u} \rangle$ - 正定性 - $\langle \mathbf{v},\mathbf{v} \rangle \geq 0$, 且当且仅当 $\mathbf{v} = 0$ 时 $\langle \mathbf{v},\mathbf{v} \rangle = 0$ - 实数内积的矩阵 - 实数内积是正定对称[[双线性型]] $B:V\times V\rightarrow\mathbb{R}$ , 由[[双线性型的矩阵]]可得实数内积在任意基下的定义为 $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T A \mathbf{y}$ , $A$ 是[[对称矩阵]] - 设 $\mathbf{x} = (x_1, x_2, \dots, x_n)$ 和 $\mathbf{y} = (y_1, y_2, \dots, y_n)$ 表示在基 $\{e_1, e_2, \dots, e_n\}$ 下的线性组合, 可以将这两个向量写作 - $\mathbf{x} = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n$ - $\mathbf{y} = y_1 e_1 + y_2 e_2 + \cdots + y_n e_n$ - 双线性型 $B(\mathbf{x}, \mathbf{y})$ 可以展开为 - $B(\mathbf{x}, \mathbf{y}) = B(x_1 e_1 + x_2 e_2 + \cdots + x_n e_n, y_1 e_1 + y_2 e_2 + \cdots + y_n e_n)$ - $\displaystyle B(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n \sum_{j=1}^n x_i y_j B(e_i, e_j)= \sum_{i=1}^n \sum_{j=1}^n x_i y_j A_{i,j}$ - 矩阵表示 - $B(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T A \mathbf{y}$ - 又对称性 $B(\mathbf{x}, \mathbf{y})=B(\mathbf{y}, \mathbf{x})$ - $A=A^T$ - 所以对于一般基 - $\langle \mathbf{x}, \mathbf{y} \rangle=B(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T A \mathbf{y}$ , $A=A^T$ - 常用对于标准正交基 $A=I$ - $\langle \mathbf{x}, \mathbf{y} \rangle=B(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$