##### 酉矩阵
- 酉矩阵
- **酉矩阵** $U$ 是指[[共轭转置]]等于[[可逆矩阵|逆矩阵]]的[[复数]]元素[[矩阵]], 由定义可得列向量两两[[正交]]行向量两两正交, 其行列向量组都是[[正交组|标准正交组]], 酉矩阵是元素均为实数的[[正交矩阵]]在复数的推广
- $U^*=U^{-1}\iff U^*U=UU^*=I$
- $U^*U = \begin{bmatrix} \mathbf{u}_1^* \\ \mathbf{u}_2^* \\ \vdots \\ \mathbf{u}_n^* \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$
- $U^*U = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{u}_1 \rangle & \langle \mathbf{u}_1, \mathbf{u}_2 \rangle & \cdots & \langle \mathbf{u}_1, \mathbf{u}_n \rangle \\ \langle \mathbf{u}_2, \mathbf{u}_1 \rangle & \langle \mathbf{u}_2, \mathbf{u}_2 \rangle & \cdots & \langle \mathbf{u}_2, \mathbf{u}_n \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{u}_n, \mathbf{u}_1 \rangle & \langle \mathbf{u}_n, \mathbf{u}_2 \rangle & \cdots & \langle \mathbf{u}_n, \mathbf{u}_n \rangle \end{bmatrix}=\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$