##### 黎曼可积判别准则 - 黎曼可积判别准则 - **黎曼可积判别准则**的直观理解就是[[可积函数|黎曼可积]]允许有限间断点. 一个有界函数 $f(x)$ 在区间 $[a, b]$ 上是[[可积函数|黎曼可积]]的, 当且仅当 $f(x)$ 的不连续点集合的[[勒贝格测度]]为零, 即[[零测集]], 或者说[[几乎处处]]连续. 所以函数闭区间连续, 函数闭区间有界间断点有限都是黎曼可积的