##### numpy 通用函数与运算符 - 通用函数(或简称 ufunc)是以**逐元素**的方式操作 ndarray 的函数,支持数组广播、类型转换和其他一些标准特性。例如逐元素的加或者减,numpy API专题中有很多函数是通用函数,特别是逻辑函数数学函数 - [[numpy.通用函数可选关键字参数]] - 下面是通用函数对应的运算符 ```python # 两个数组各元素对应运算+ - * / ** y = xl + x2 # np.add(xl,x2[,y]) y = xl - x2 # np.subtract(xl,x2[,y]) y = xl * x2 # np.multiply(xl,x2[,y]) y = xl / x2 # np.divide(xl,x2[,y]) y = xl / x2 # np.true_divide(xl,x2[,y]) y = xl // x2 # np.floor_divide(xl,x2[,y]) y = -xl # np.negative(xl[,y]) y = xl ** x2 # np.power(xl,x2[,y]) y = xl % x2 # np.remainder(xl,x2[,y]), np.mod(xl,x2,[,y]) # 算数比较,产生布尔型数组> < >= <= == != y = x1 == x2 # np.equal(xl,x2[,y]) y = xl != x2 # np.not_equal(xl,x2[,y]) y = xl < x2 # np.less(xl,x2[,y]) y = xl <= x2 # np.less_equal(xl,x2[,y]) y = xl > x2 # np.greater(xl,x2[,y]) y = xl >= x2 # np.greate_equal(xl,x2[,y]) # 二元运算 y = x1 & x2 # np.bitwise_and(xl,x2[,y]) y = x1 | x2 # np.bitwise_or(xl,x2[,y]) y = x1 ^ x2 # np.bitwise_xor(xl,x2[,y]) y = ~ x1 # np.bitwise_invert(xl[,y]) ```