##### numpy.linalg 范数, 行列式, 迹
```python
linalg.norm(x, ord=None, axis=None, keepdims=False)
# 矩阵或向量范数
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm --
'nuc' nuclear norm --
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 -- sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other -- sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
linalg.det(a)
# 计算数组的行列式。
np.trace(a[, offset, axis1, axis2, dtype, out])
# 迹 沿数组的对角线返回和。
linalg.matrix_rank(A[, tol, hermitian])
# 用奇异值分解方法求阵列的矩阵秩
```